Review of Low Power and High Speed Implementation of 3-bit Flash Analog to Digital Converter

C. Vivek, S. Palanivel Rajan*

Department of Electronics and Communication Engineering, M. Kumarasamy College of Engineering, Karur, Tamil Nadu, India.

*Corresponding author: E-Mail: palanivelrajanme@gmail.com ABSTRACT

In this paper, we present High speed and Low power implementation of 3-bit flash analog to digital converter. Analog to Digital converter is a device which converts continuous physical quantity to digital quantity. In the current CMOS technology power reduction is the foremost question at daily vitality. In advanced area, power utilization and low voltage form into wide component which is strenuous for disregard converters and high speed devices. In this paper by using diode based stacked power gating technique and low leakage stacked power gating technique a complete inquisition of 3-bit flash ADC circuit is proposed. These power gating method reduce the average power and the leakage current efficiently. The important criteria to effect the efficiency of data conversion systems are speed, resolution and power consumption. Simulation has been performed using cadence virtuoso tool at assorted power supply by 90nm technology to evaluate the power gating techniques.

KEY WORDS: Leakage Current, Stacked Power Gating Technique, 3-Bit Flash ADC, Power.

1. INTRODUCTION

This 3-bit flash ADC is a device which converts Analog form to digital form. This 3-bit flash ADC device otherwise known as parallel ADC. 2^N-1 comparators are used in N-bit converter ADC circuit, where N equals to 3. In this present scenario system-on-chip flourish more; so signal processing component utilization is a most important factor. It is having high speed in GIGA sample and power consumption in mW. In this 3-bit flash ADC comparator plays a prominent role. To compare two signals a comparator is a needed device in ADC. In this paper differential based comparator is used which is having high frequency.

Encoder is a part which is used in flash ADC, it locates besides the comparator this sleep transistor is placed in between circuit ground and actual ground. Power utilization, resolution and speed can be the important factor for some data conversion system efficiency. This complete inspect has simulated in cadence tool in GPDK 90nm CMOS technology using supply voltage as 1.2V.

Background:

Explaining the blocks present in 3-bit flash ADC:

Comparator: There are different types of comparators. Some of them are discussed below. Showing different comparators in the below table with respective to their supply voltage and power consumption.

Table.1. Different types of comparator

Comparators	Supply voltage	Power consumption
OPAMP based	1.2V	52.80 mw
Differential comparator	1.2V	49.94mw
Double tail	1.2V	0.006mw
Dynamic latched	1.2V	0.003mw
Current mode saturation	1.2V	0.6mw
Current mode subthreshold	1.2V	114.2mw

In this paper used differential comparator. Comparator is a device which compares two input signals and gives output as digital signal. It have two analog input terminals V+ and V- and output Vo.

$$V0 = \begin{cases} 1, & \text{If } V+>V-\\ 0, & \text{If } V+< V- \end{cases}$$

Figure.1. Symbol for comparator

Comparator was designed with input DC voltage 0.6V and VDD as 1.2V. This comparator will be applicable up to 6GHZ. Done outputs with transient and DC analysis.

Encoder: Encoder can be designed in many ways using gates. There are different types of Encoder. Some of them are explained below. Showing different Encoders in the below table with respective to their delay, power, and their advantages.

Figure.2. Schematic of comparator Table.2. Comparison of different Encoder

Tubicizi Computison of unferent Encoder					
	Rom based encoder	der Wallace tree encoder Fat tree encoder		Mux based	
				encoder	
Delay (ns)	0.1346	4.05	0.09343	0.1325	
Power (u wat)	431.8	8.27	0.1104	0.0442	
Advantage	Contain an in	Offer global error	Thermometer 2:1 to In	High speed, low	
	encoder portion and	correction consists of	conde then into binary,	power	
	thermometer 2:1 hot	full adder in encoder	implement using XOR	consumption,	
	code then into	portion	and XNOR in encoder	low circuit	
	binary, simple		portion. Faster than ROM	complexity	
	desing		based		
Disadvantage	Slow speed, larger	Latency problem, high	Slow and more		
	power consumption,	routing complexity	consumption		
	bubble error		-		

Now here we can see that Encoder also is current mode which is basically to attain high speed in this complete work we have simulated three different type of Encoder and on the basis of that we can say that MUX based Encoder is fastest and less power consuming and in MUX based Encoder we can simulate for three different topology which are as follows

- Implementation of 2:1 multiplexer using basic gate
- Implementation of 2:1 multiplexer using transmission gate
- Implementation of 2:1 multiplexer using current mode logic multiplexer.

In this paper we used 2:1 multiplexer using basic gate. The schematic of the 2:1 multiplexer using basic gate can be designed by using AND, OR and NOT gates .Whereas 2 AND gates, 1 OR gate and 1 NOT gate. Hence schematic was shown below.

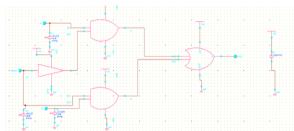


Figure.3. 2:1 MUX using basic gates

First designing AND, NOR and NOT gates using CMOS technology in the gpdk90nm and creating symbol for that and forming 2:1MUX. This MUX was designed with VDD=1.2, DC voltage as 1.2. MUX formula shown below.

Where S=0 , Z=A

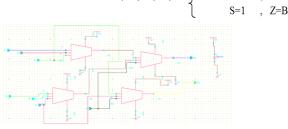


Figure.4. 8:3 Encoder using MUX

8:3 Encoder is designed with MUX. Using stimuli procedure and giving VDD as 1.2V and done simulation in cadence and creating symbol for the 8:3 Encoder.

BIT FLASH ADC: Different types of flash ADC are discussed below:

Table.3. Comparison of different ADC

	Flash ADC	SAR ADC	Pipeline ADC	Integrating ADC	Sigma delta ADC
Advantage	High speed in giga sample	Medium resolution 8- 16 bit, speed in mega sample, low power and small size, less expensive and determine one bit at a time	Resolution between 8-14 bits, speed 100Mbps, low power consumption than flash	Use in monitoring of DC signal, in industrial and DC signal, high resolution around 16bit, less expensive, less power consumption, good noise performance, speed 100Mbps	High resolution 12-24 bit, lower bandwidth
Disadvantage	Power consumption in milli watt	Speed less 5 Mbps	Latency		Not applicable for multichannel, require filter to remove noise

Flash ADC Architecture:

Flash ADC: Flash ADC architecture is shown below which is designed and implemented in gpdk90 nm CMOS technology. 3-bit flash ADC is a circuit which consists of 2^{N} -1 comparators, where N=3. 2^{3} -1 = 7 so using 7 comparators.

Table.4. Comparison of different ADC

	Table.4. Comparison of different ADC						
Conversion	N bits 2 ^N -1	Binary search	Unknown input	Small parallel	Oversampling		
method	comparators	algorithm,	voltage is	structure, each	ADC, 5-HZ to 60		
		internal circuitry	integrated and	stage works on	HZ rejection		
		runs higher speed	value compared	one to a few bits	programmable		
			against known		data output		
			reference value				
Encoding	Thermometer	Successive	Analog	Digital	Over sampling		
method	code encoding	approximation	integration	correction logic	modulator, digital		
					decimation filter		
Disadvantages	Sparkle codes,	Speed limited to	Slow	Parallelism	Higher order (4 th		
	met stability,	5Mbps may	conversion rate.	increases	order or higher) –		
	high power	require anti-	High precision	throughput at	multibit ADC and		
	consumption,	aliasing filter	external	the expense of	multibit feedback		
	large size,		components	power and	DAC		
	expensive		required to achieve	latency			
Conversion	Conversion time	Increases linearly	accuracy Conversion	Increase linearly	Trade-off		
time	does not change	with increased	time doubles	with increased	between data		
time	with increased	resolution	with every bit	resolution	output rate and		
	resolution	resolution	increase in	resolution	noise free		
	10501441011		resolution		resolution		
Resolution	Component	Component	Component	Component	Component		
	matching	matching	matching does	matching	matching		
	typically limits	requirements	not increase	requirements	requirements		
	resolution to 8	double with every	with increase in	double with	double with every		
	bits	bit increases in	resolution	every bit	bit increase in		
		resolution		increase in	resolution		
				resolution			
Size	2 ^N -1	Die increases	Core die size	Die increases	Core die size will		
	comparators, die	linearly with	will not	linear with	not materially		
	size and power	increase in	materially	increase in	change with		
	increases	resolution	change with	resolution	increase in		
	exponentially		increase in		resolution		
	with resolution		resolution				

Figure.5. Schematic of 3-bit flash ADC

Stacked power gating technique: Below figure shows the stacked power gating technique used in flash ADC. In this technique sleep transistors are used, by using these transistors leakage current may reduce. Here ST1 and ST2 are the sleep transistors. ST1 and ST2 will be off in standby mode; hence in this condition leakage current may reduce.

While doing simulation we will observe 3 modes.

Active mode: Both ST1 and ST2 will be staying in ON condition i.e., sleep transistor remains at logic 1. In this mode both transistors may have low resistance.

Voltage across C1 = VC1 (active mode) =V(R1ON) + (R2ON)

Voltage across C2 = VC2 (active mode) =V (R2ON) = 0V

Standby mode: Both ST1 & ST2 are off on standby mode and both offers high resistance. Capacitance C1 charges up to voltage V1 and capacitance C2 charges up to voltage V2. So, VC1 (Standby mode) = V1, VC2 (Standby mode) = V2

Sleep to active mode transition: In this sleep transistor will be off. Control signal will be in on condition. The parameters T1 and capacitances C2 will keep to particular value that is based on following factors: Minimum ground bounce noise, Minimum leakage current.

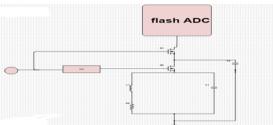


Figure.6. Schematic of stacked power gating

Diode based stacked power gating technique:

- Transistor M1 and M2 are sleep transistors. For less leakage current these transistors use high threshold voltage.
- To make sleep transistor M1 functioning as diode during mode transition T1 is used as control transistor.

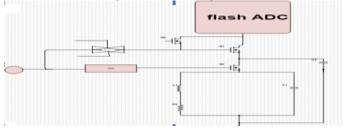


Figure.7. Diode based power gating technique

Modification of this project: In the given paper the circuit will be applicable up to 1GHZ hence by modifying the comparator the circuit will be applicable more than 1GHZ. Hence these type of circuits may use in different applications.

Modified comparator is shown below;

Design parameters of the circuit is Technology library: gpdk 90nm, Supply voltage: 1.2V, Length: 100nm, Width: according to their sizing

2. CONCLUSION

Flash ADC topology is nothing but fastest ADC topology, by using higher bandwidth flash ADC will increase speed and power dissipation is increases exponentially. If circuit contains high speed and power dissipation can use in different applications, hence this project used in Ultra-Wide Band application.

Hence shown Designing and implementing the circuit of 3-bit Analog to Digital, whereas by using power gating technique to the flash ADC for reducing leakage current and average power. Designing and implementing the circuit of 3-bit Analog to Digital by using power gating technique to the flash ADC for reducing leakage current and average power. Hence these techniques are going to design in gpdk45 nm technology.

Journal of Chemical and Pharmaceutical Sciences

REFERENCES

Bailey D, Soenen E, Gupta P, Villarrubia P and Sang D, Challenges at 45 nm and beyond, IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2008, 11-18.

Chen C.Y, Le M and Kim K.Y, A low power 6-bit flash ADC with reference voltage and common-mode calibration, in Symp. VLSI Circuits Dig, 2008, 12–13.

Guopu Zhu & Sam Kwong, G best guided artificial bee colony algorithm for numerical function optimization, Applied Mathematics and Computation, 217, 2010, 3166-3173.

Jiao H and Kursun V, Noise, Aware Data Preserving Sequential MTCMOS Circuits with Dynamic Forward Body Bias, Journal of Circuits, Systems and Computers, 20 (1), 2011, 125-145.

Juliana dos Santos B, Carlos Heuser A, Viviane Moreira P and Leandro Wives K, Automatic threshold estimation for data matching applications, Information Sciences, 181 (13), 2011, 2685-2699.

Meher M.R, Jong C.C and Chip-Hong Chang, A High Bit Rate Serial-Serial Multiplier with On-the-Fly Accumulation by Asynchronous Counters, IEEE Trans. On Very Large Scale Integr. (VLSI) System, 19 (10), 2011, 1733-1745.

Palanivel Rajan S, Sukanesh R, Experimental Studies on Intelligent, Wearable and Automated Wireless Mobile Tele-Alert System for Continuous Cardiac Surveillance, Journal of Applied Research and Technology, 11 (1), 2013, 133 – 143.

Park J.C and Mooney V.J, Sleepy Stack Leakage Reduction, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14 (11), 2006, 1250-1263.

Shriram Vasudevan K, Vivek C, An Intelligent Attempt to Export Files into Cloud in Handheld Devices through Gesture Recognition, Indian Journal of Science and Technology, 8, 2015, 1-8.

Singh H, Agarwal K, Sylvester D and Nowka K.J, Enhanced Leakage Reduction Techniques Using Intermediate Strength Power Gating, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15 (11) 2007, 1215-1224.

Stojcevski A, Le H.P, Zayegh A and Singh J, Flash ADC Architecture, IEEE Electronic Letters Journal, 2003.

Suhwan Kim, Chang Jun Choi, Deog-Kyoon Jeong, Kosonocky S.V and Sung Bae Park, Reducing Ground-Bounce Noise and Stabilizing the Data-Retention Voltage of Power-Gating Structures, IEEE Transactions on Electron Devices, 55 (1), 2008, 197-205.

Sukanesh R, Palanivel Rajan S, Cellular Phone based Biomedical System for Health Care, Proceedings of the IEEE, International Conference on Communication Control and Computing Technologies, INSPEC Accession Number, 11745436, 2010, 550-553.

Sundstrom T and Alvandpour A, Utilizing process variations for reference generation in a flash ADC, IEEE Trans. Circuits Syst. II, Exp. Briefs, 56 (5), 2009, 364–368.

Temes G, Micropower data converters, A tutorial, IEEE Trans. Circuits Syst II, Exp Briefs, 57 (6), 2010, 405–410.

Uyttenhove K and Steyaert M, A 1.8 V 6-bit 1.3 GHz flash ADC in 0.25 m CMOS, IEEE J. Solid-State Circuits, 38 (7), 2003, 1115–1122.

Vijayprasath S, Palanivel Rajan S, Performance Investigation of an Implicit Instrumentation Tool for Deadened Patients Using Common Eye Developments as a Paradigm, International Journal of Applied Engineering Research, 10 (1), 2015, 925-929.

Vivek C, Palanivel Rajan S, Z-TCAM, An Efficient Memory Architecture Based TCAM, Asian Journal of Information Technology, 15 (3), 2016, 448-454.

Wang Z and Chang M.C.F, A 1-V 1.25-GS/S 8-bit self-calibrated flash ADC in 90-nm digital CMOS, IEEE Tran. Circuits Syst II, Exp Briefs, 55 (7), 2008, 668–672.

Wang Z and Chang M.C.F, A 600-MSPS 8-bit CMOS ADC using distributed track-and-hold with complementary resistor/capacitor averaging, IEEE Trans. Circuits Syst I, Reg Papers, 55 (11), 2008, 3621–3627.

Weaver S, Hershberg B, Kurahashi P, Knierim D and Moon U, Stochastic flash analog-to-digital conversion, IEEE Trans. Circuits Syst I, Reg, 57 (11), 2010, 2825–2833.

Wong Y.L, Cohen M.H and Abshire P.A, A 750- MHz 6-b adaptive floating-gatequantizer in 0.35-μm CMOS, IEEE Trans. Circuits Syst I, Reg, 56 (7), 2009, 1301–1312.